Create an Empirical Distribution
dst_empirical.Rd
An empirical distribution is a non-parametric way to
estimate a distribution using data. By default,
it assigns equal probability to all observations
(this can be overridden with the weights
argument).
Identical to dst_finite()
with weights as probabilities,
except weights need not add to 1.
Arguments
- y
<
data-masking
> Outcomes to comprise the distribution. Should either evaluate to an (atomic) vector, or be a name in the specified data.- data
Data frame containing the outcomes
y
and/orweights
. Optional.- weights
<
data-masking
> Weights to assign each outcome iny
. Will be normalized so that the weights add up to 1 (unlikedst_finite()
), representing probabilities.- ...
Additional arguments, currently not used.
Examples
x <- rnorm(100)
dst_empirical(x)
#> [1] "finite" "dst"
#>
#> probabilities :
#> # A tibble: 100 × 2
#> location size
#> <dbl> <dbl>
#> 1 -2.61 0.01
#> 2 -2.44 0.01
#> 3 -2.27 0.01
#> 4 -1.91 0.01
#> 5 -1.91 0.01
#> 6 -1.86 0.01
#> 7 -1.82 0.01
#> 8 -1.70 0.01
#> 9 -1.63 0.01
#> 10 -1.51 0.01
#> # ℹ 90 more rows
dst_empirical(value, data = data.frame(value = x))
#> [1] "finite" "dst"
#>
#> probabilities :
#> # A tibble: 100 × 2
#> location size
#> <dbl> <dbl>
#> 1 -2.61 0.01
#> 2 -2.44 0.01
#> 3 -2.27 0.01
#> 4 -1.91 0.01
#> 5 -1.91 0.01
#> 6 -1.86 0.01
#> 7 -1.82 0.01
#> 8 -1.70 0.01
#> 9 -1.63 0.01
#> 10 -1.51 0.01
#> # ℹ 90 more rows